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The nonsimilar boundary-layer solutions are presented to study the mixed convective 
micropolar fluid f low about a rotating cone. The transformed boundary-layer equations 
contain an important mixed convection parameter that determines the relative importance 
of the free convection on forced (rotational) convection. Numerical solutions are presented 
for a range of values .of the material parameters, the buoyancy parameter, and Prandtl 
number of the fluid. A discussion is provided for the microrotation boundary conditions 
and their influence on the velocity, gyration, and heat transfer fields. 
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I n t r o d u c t i o n  

There are several practical applications in which significant 
temperature differences between the surface of the body and 
the free stream exist. These temperature differences cause 
density gradients in the fluid medium, and free convection 
effects become important in the presence of gravitational body 
force. A situation where both the forced- and free-convection 
effects are of comparable order is called combined convection. 
The friction factor and heat transfer rate can be quite different 
under mixed convection conditions relative to the forced 
convection case. 

Sparrow and Gregg (1959) obtained a similarity solution for 
the flow of a Newtonian fluid on a rotating disk. The problem 
of laminar flow of a Newtonian fluid over a rotating cone was 
studied by We (1959). Hering and Grosh (1963) investigated 
the effect of free convection on forced convective flow of a 
rotating cone in a Newtonian fluid. A similrity solution for a 
rotating cone in a stably stratified medium was given by 
Himasekhar and Sarma (1986). Lin and Lin (1987) proposed a 
new similarity variable for the analysis of laminar boundary- 
layer heat transfer from a rotating cone or disk. Convective 
heat transfer to non-Newtonian fluids in rotating system is 
important for thermal design of industrial equipment dealing 
with such fluids. The mixed convection from a rotating cone 
to power law fluid has been studied by Wang and Kleinstreuer 
(1990). Because of the increasing importance in the processing 
industries and elsewhere of materials whose flow behavior in 
shear cannot be characterized by Newtonian relationships, a 
new stage in the evolution of fluid dynamic theory is in 
progress. 

Eringen (1966) formulated the theory of micropolar fluids 
and derived constitutive laws for fluids with microstructure. 
This theory included the effects of local rotary inertia and 
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couple stresses and is expected to provide a mathematical 
model for the non-Newtonian behavior observed in certain 
manmade liquids such as polymers, colloidal suspensions, 
fluids with additives, and animal blood. The theory of ther- 
momicropolar fluids with additives, and animal blood. The 
theory of thermomicropolar fluids has been developed by 
Eringen (1972) by extending the micropolar fluid theory. 

In the present paper, we consider the combined convection 
from a rotating cone to micropolar fluids with an arbitrary 
variation of surface temperature. Numerical results are 
presented for a range of values of the material parameters, the 
buoyancy parameter, and Prandtl number of the fluid. 
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Figure 1 Flow model and coordinate system 

0142-727X/95/$10.00 
SSDI 0142-727X(94)00009-2 



Mixed convection of a micropolar fluid: R. S. R. Gorla and S. Nakamura 

A n a l y s i s  

We consider a vertical circular cone rotating about its vertical 
axis of symmetry in a large body of otherwise quiescent 
micropolar fluid. The rotational motion of the cone induces a 
circumferential velocity, and the centrifugal field, thus, impels 
the fluid along the cone surface. The fluid far from the cone 
migrates toward it, thus replacing the fluid that has been 
centrifuged along the cone surface. Figure 1 shows a sketch of 
the flow model and the coordinate system. It is assumed that 
the free-stream temperature is constant at T o. The surface of 
the cone is assumed to be Tw(x ). It is assumed that viscous 
dissipation is negligible. Adopting the Boussinesq approxiation, 
the governing equations may be written within boundary-layer 
approximation as follows. 

Mass:  

t?ru ~rv 
- - + - - = 0  (1) 
o~x ~y 

M o m e n t u m :  

au au ( ,,aN 
. . . . .  g f l ( T - -  To~)cosq~+ v+-X -i 

u Ox + v Oy x \ p l 63y 2 p ~3y 

(2) 

u - - + v - - + - - =  v +  
6~X t~y X 6qy 2 

Angular momentum." 

u - - + v - - -  - 2 N +  + - - - -  
~x ~y pj 

Energy." 

a T  OT t~2T 
U - - + I ) - - = O ~ - -  

dx dy Oy2 

(3) 

gq2 N 

pj t3y 2 (4) 

(5) 

In the equations above, u, v, and w are the velocity 
components in the x, y, and z directions, respectively. The 
component of microrotation is N, and T is the fluid 
temperature. The appropriate boundary conditions are given 

by the following: 

1 c3u 
= - T = Tw(x) y 0: u = 0 ,  v = 0 ,  w = r Q ,  N 2 0 y '  (6) 

y -*  oo: u-*0 ,  v-*0,  w-*0,  N - * 0 ,  T-*To o 

The boundary condition for the microrotation assumes that 
the asymmetric part of the stress tensor vanishes at the surface. 

The continuity equation may be satisfied by introducing the 
stream function ~b defined as follows: 

d0 ~4, 
r u = - -  and r v = - - -  (7) 

gy gx 

We further define 

F(~, tl) = O/rex,  G(~, ~1) = w/rQ, H ( ~ ,  t]) = (0~2)¢3/vx2) - IN, 

0 = ( T  -- T=)/(T w -- T=), ~l = (y/x)z ,  ~ = ~/(I + 0, 

Z = ReU2/~, ~ = ReU2/Ra 1/4, A = x/#, 

gfl(T w - T~)x 2 cos ~b 
;t = 7/#J, Re = x2Q sin q~/v, Ra = 

~tV 

(V = (v/jf~ sin (~), (Tw - T~) ~ x m (8) 

In terms of F, G, H, and q defined in Equation 8, Equations 
2-5 are transformed to the following: 

8 -- (1 -- CX1 -- m) 
(1 + A)PrF'" + FF" 

4 

2 - (1 - ~)(1 - m) (F') 2 

2 

+ pr2~4G 2 + Pr(1 - 040 + AH' 

_~(1--0(14 - - m ) [  F'~F'-O~ - F " C 3 ~ ]  

8 -- (1 - -  0 ( 1  - m )  
(1 + A)PrG" + FG' - 2F'G 

4 

_ ~ ( 1 - 0 ( 1 4  - m )  IF'OG--c~, - G'c~O~] 

(9) 
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N o t a t i o n  

F 
# 
G 
h 
H 
J 
L 
m 

mw 
N 
Nu 
Pr 
r 
Ra 
Re 
T 
U 
V 
U, 1), W 

dimensionless stream function 
gravitational acceleration 
dimensionless tangential velocity 
heat transfer coefficient 
dimensionless microrotation 
microinertia per unit mass 
characteristic length 
temperature power law index 
couple stress at wall 
component of microrotation 
Nusselt number 
Prandtl number 
distance from axis to its surface 
Raleigh number 
Reynolds number 
temperature 
reference velocity 
dimensionless material property 
velocity components in x, y, and z directions, 
respectively 

X 

Y 
Z 

distance along the cone surface 
distance normal to the surface 
tangential coordinate 

Greek symbols  

thermal diffusivity 
fl coefficient of thermal expansion 
7 material property of the fluid 
t/, ~ dimensionless coordinates 
0 dimensionless temperature 
x microrotation viscosity parameter 
2, A dimensionless material parameters 
p fluid density 

shear stress 
q~ half apex angle of cone 
~b stream function 

angular velocity 

Subscripts 

W surface condition 
oo condition far from the surface 
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4 
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Here, the prime denotes partial differentiation with respect to 
r/alone. The transformed boundary conditions are given by the 
following: 

F(~, 0) = F(~, 0) = 0, G,(~, 0) = 0(4, 0) = 1, 

F(~, 0) = (Pr/2)F"(~, 0), (13) 

f ' (~,  oo) = G(¢, oo) = 0(4~, ~ )  = H(~, ~ )  = 0 

Equations 9-12 apply to the Newtonian fluid when A = 0. 
The quantity m in the equations above comes from the 
temperature distribution on the cone surface. The temperature 
is constant, linear, and parabolic for m = 0, 1, and 2, 
respectively. Equations !)-12 become self-similar when m = 1. 

The wall shear stress may be written as follows: 

%= ( # + x ) - - + x N  ~ (14) 
0y iy= o 

The local friction factor is defined as follows: 

Csx = ~J(pU2/2), 
where U = rfl + [gfl(T w -T~)x] 1/2. Then we can write the 
following: 

csxx/2 = {(1 + 0.5A)F"(41, 0)/Pr}[~ 2 + (1 - ~2)/x/Pr]-2 (15) 

The couple stress at the wall is given by the following: 

7(dN~ 
mw \ a y / s  = o \vx  o}  

(16) 

G(%n) t 
1.o - t  

The Nusselt number  Nl:t x is given by the following: 

N u J z  = - -  0'(~, 0) (17) 

The numerical scheme to solve Equations 9-13 adopted here 
is based on the finite difference of scheme developed by Gorla  
et al. (1993). These details are not  reproduced here to conserve 
space. 

The numerical results, are affected by the number  of mesh 
points in both directions. To obtain accurate results, a mesh 
sensitivity study was performed. In the ~/ direction, after the 
results for the mesh points of 51, 100, 190, 800 were compared, 
it was found that 190 points give the same results as 800. In 
the x direction, only 11 mesh points were found to give as 
accurate results as with 21 points. Therefore, the remainder of 
the computations were performed with 190 times 11 mesh 
points. If the numerical scheme written in this section is used 
for Pr that substantially deviates from 1, particularly for 
a much smaller Pr, both r/,,= x and the mesh sizes must be 
reoptimized. 

To examine the validhy and accuracy of the present scheme, 
we compare our results with the published data for the 
Newtonian fluid cases. For  comparison with the literature data, 
we consider the forced convection with the constant  
temperature on the cone surface, for Pr = 1 and 10, our results 
agree well with those of Wang and Kleinstreuer (1990), as 

Table 1 Compar ison of  0 "  (0) to  Wang and 
Kleinstreuer (1990)* 

Pr = 1 Pr = 10 

Wang and Kleinstreuer 0 .62894 0 .56066 
Present work  0 .62853 0 .56087 

* - 0 " ( 0 )  = - 0 ' ( 0 ) ( 1  + pr)2/3/pr  

shown in Table 1. Comparison for other Pr numbers are not  
shown, because the mesh size and qmax have been optimized for 
Pr = 10. 

Results and discussion 

Figures 2-5 display the profiles of axial velocity, tangential 
velocity, microrotation, and temperature within the boundary 
layer for the linear surface temperature case. The evolution of 
the axial velocity profile F '  (~/, 4) from the pure free convection 
(¢ = 0) to pure forced convection (4 = 1) is seen in Figure 2. 
Initially as ~ increases, the peak axial velocity decreases with 
diminishing free-convection effect. However, for ~ > 0.6, the 
amplitude of F '  increases with increasing rotation of the cone, 
thus indicating a change in momentum transport mechanism. 

Figure 3 illustrates that the dimensionless radial velocity 
profile broadens initially as ~ increases and then tends to 
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Figure 2 Axial velocity profiles 
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Figure 4 Microrotat ion p r o f i l e s  

become shallower for ~ >0.6. Figure 4 illustrates the 
microrotation profiles. We observe that as ~ increases, initially 
the microrotation profiles tend to become flatter, and then for 

> 0.6, the microrotation profiles have a high positive gradient 
at the wall. From Figure 5, we observe that the temperature 
distribution within the boundary layer initially broadens with 

and then, for ~ > 0.6, the temperature profiles become 
shallower. 
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Figure 5 Temperature profiles 

In the free-convection regime, the heat transfer rate decreases 
with increasing values of ~, and then increases with increasing 
values of ~ in the forced convection regime, where the transport 
phenomenon is dominated by the rotational motion of the 
cone. The heat transfer rate increases as m increases. This 
behavior is displayed in Figure 6. 

Table 2 summarizes our numerical results for F"(¢, 0), 
G'(~, 0), H'(~, 0), and 0'(~, 0) with A and 2 treated as prescribed 

T a b l e  2 Computed results of F', G', H' and 0' at the wall for m = 1 (Pr = 10, V =  0.1) 

;. A F"(~, o) G'(~, 0) ~(~,  0) 0'C~, 0) 

0.0 0.5 0.5 0.60072 - 0 . 2 4 2 3 9  - 0 . 0 0 2 0 9  - 0 . 5 7 7 1 9  
0.0 0.5 5.0 0.24662 - 0 . 1 1 5 9 4  - 0 . 0 0 0 3 2  - 0 . 5 2 4 0 7  
0.0 0.5 50.0 0.04908 - 0 . 0 6 8 3 0  0.00339 - 0 . 3 0 3 5 3  
0 . 0  5.0 0.5 0.59244 - 0 . 2 3 9 0 4  0.12469 - 0 . 6 6 9 6 5  
0.0 5.0 5.0 0.2341 3 - 0 . 1 1 1 6 5  0.05385 - 0 . 5 0 6 0 6  
0.0 5.0 50.0 0.04889 - 0.06817 0.01467 - 0.29934 
0.2 0.5 0.5 0.32173 -0 .19811 0.05311 -0 .55081  
0.2 0.5 5.0 0.14573 - 0.09809 0.13554 - 0.43654 
0.2 0.5 50.0 0.03482 - 0.06752 0.05370 - 0.26225 
0.2 5.0 0.5 0.31726 - 0.1 9573 0.08407 - 0.54526 
0.2 5.0 5.0 0.13051 - 0.09691 0.05535 - 0 . 4 1 8 0 8  
0.2 5.0 50.0 0.03090 - 0.06751 0.02878 - 0.25518 
0.4 0.5 0.5 0.35640 -0 .22111 0.17707 - 0 . 5 9 0 1 2  
0.4 0.5 5.0 0.21050 - 0 . 1 1 6 1 9  0.27386 -0 .51591  
0.4 0.5 50.0 0.04512 - 0 . 0 6 8 2 6  0.06272 --0.30123 
0.4 5.0 0.5 0.34677 - 0.21894 0.10436 - 0.58255 
0.4 5.0 5.0 0.18379 -0 .11  512 0.12352 - 0.49335 
0.4 5.0 50.0 0.04275 - 0 . 0 6 8 2 2  0.04751 - 0 . 2 9 7 2 4  
0.6 0.5 0.5 0.96416 - 0.31483 0.73236 - 0.83249 
0.6 0.5 5.0 0.63702 - 0 . 1 6 7 5 6  1.07474 - 0 . 7 5 8 1 3  
0.6 0.5 50.0 0.17441 - 0 . 0 7 3 9 5  0.22513 - 0 . 4 9 6 0 7  
0.6 5.0 0.5 0.93042 - 0 . 3 1 1 5 7  0.30296 - 0 . 8 1 9 6 3  
0.6 5.0 5.0 0.55990 -0 .16721 0.52956 -0 .72701  
0.6 5.0 50.0 0.16951 - 0 . 0 7 3 8 5  0.19577 - 0 . 4 9 2 0 5  
0.8 0.5 0.5 2.25996 - 0.41907 2.27928 - 1.10896 
0.8 0.5 5.0 1.51413 - 0 . 2 2 3 1 6  3.33097 - 1 . 0 1  498 
0.8 0.5 50.0 0.49281 - 0 . 0 8 5 5 0  0.68984 - 0 . 7 1 1 7 9  
0.8 5.0 0.5 2.17598 - 0 . 4 1 4 6 2  0.82252 - 1.09085 
0.8 5.0 5.0 1.33247 - 0.22315 1.66395 - 0.97354 
0.8 5.0 50.0 0.48429 - 0.08545 0.62312 - 0.70835 
1.0 0.5 0.5 4.40723 - 0.52421 5.52277 - 1.38938 
1.0 0.5 5.0 2.96261 - 0 . 2 7 9 0 3  8.09658 - 1 . 2 7 2 4 2  
1.0 0.5 50.0 1.051 44 - 0.10110 1 . 6 6 0 6 1  - 0.92232 
1.0 5.0 0.5 4.24078 - 0 . 5 1 8 5 8  1.90867 - 1 . 3 6 6 2 8  
1.0 5.0 5.0 2.60702 - 0.27904 4.06009 - 1.22019 
1 . 0  5.0 50.0 1.03744 - 0 . 1 0 1 1 6  1.52246 - 0 . 9 1 8 9 4  
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Figure 6 Nusselt number versus 

parameters. This inform~ttion is useful in the evaluation of wall 
shear stress, wall coup]le stress, and heat transfer rate, as 
described by Equations 14-17. Table 3 shows a comparison 
of the results for the case of Newtonian fluids. A comparison 
of the results in Tables 2 and 3 indicates that micropolar  fluids 
exhibit reduction in drag as well as heat transfer rate. For  
example, when ~ = 0, 2 --= 0.5 and A = 0.5, 5 and 50, we notice 
that the ratio of friction factor for the micropolar  to Newtonian 
fluids is 0.7816, 0.3209, and 0.0639 respectively. Similarly, the 
ratio of heat transfer rates for the above combination of 
material parameters for the micropolar  to Newtonian fluids is 
0.9423, 0.7292, and 0.422:3, respectively. This suggests that the 
micropolar  fluids may be useful in several practical 
applications. 

C o n c l u d i n g  r e m a r k s  

In this paper we used the theory of micropolar  fluids 
formulated by Eringen (1966) to derive a set of boundary-layer 
equations for the combined convection from a rotating cone. 
Numerical solutions are presented for the fluid flow and heat 
transfer characteristics, and their dependence on the pertinent 
material parameters is discussed. The wall values of the 
velocity, microrotation, and temperature are tabulated for a 
wide range of the dimensionless grouping of material 
parameters. This information would be useful to evaluate the 
surface friction factor and wall couple stress, as well as the heat 

Mixed convection of  a micropolar f luid: R. S. R. Gorla and S. Nakamura 

T a b l e  3 Computed results of F", G', /-/', and 0' at the wal l  for 
Newtonian fluid (Pr = 10) 

¢ F(~, 0) G(~, 0) 0'(~, 0) 

m = 1 0.000 0.76862 -0 .29446  -0 .71867  
0.200 0.40842 -0 .24072  -0 .58307  
0.400 0.42263 --0.26276 - 0 . 6 0 8 3 9  
0.600 1.11318 -0 .37107  --0.85027 
0.800 2.60397 - 0.49382 -- 1.13219 
1.000 5.07494 - 0.61792 - 1 .41874 

transfer rate. The numerical results indicate that the micropolar  
fluids display a reduction in drag as well as surface heat transfer 
rate when compared to the Newtonian fluid. 
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